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Abstract

I develop new asymptotic results for long-horizon regressions with overlapping observations.

I show that rather than using auto-correlation robust standard errors, the standard t-statistic

can simply be divided by the square root of the forecasting horizon to correct for the effects

of the overlap in the data. Further, when the regressors are persistent and endogenous, the

long-run OLS estimator suffers from the same problems as does the short-run OLS estimator,

and similar corrections and test procedures as those proposed for the short-run case should also

be used in the long-run. In addition, I show that under an alternative of predictability, long-

horizon estimators have a slower rate of convergence than short-run estimators and their limiting

distributions are non-standard and fundamentally different from those under the null hypothesis.

These asymptotic results are supported by simulation evidence and suggest that under standard

econometric specifications, short-run inference is generally preferable to long-run inference. The

theoretical results are illustrated with an application to long-run stock-return predictability.
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1 Introduction

Predictive regressions are used frequently in empirical finance and economics. The underlying economic

motivation is often the test of a rational expectations model, which implies that the innovations to the

dependent variable should be orthogonal to all past information; i.e., the dependent variable should

not be predictable using any lagged regressors. Although this orthogonality condition should hold at

any time horizon, it is popular to test for predictability by regressing sums of future values of the

dependent variable onto the current value of the regressor. A leading example is the question of stock

return predictability, where regressions with 5 or 10 year returns are often used (e.g. Campbell and

Shiller, 1988, and Fama and French, 1988a); while stock return predictability will also serve as the

motivating example in this paper, the results derived are applicable to a much wider range of empirical

questions.1

The reasons behind the use of such long-horizon regressions are seldom clearly spelled out, but there

seems to be an intuitive notion that a stronger signal might be extracted by analyzing long-run data.

Previous analytical evidence in favour of this intuition is somewhat mixed, and overall fairly weak

(e.g. Berkowitz and Giorgianni, 2001, Campbell, 2001, Mark and Sul, 2004, and Rapach and Wohar,

2005). From a practical perspective, however, the main issue with long-horizon regressions has been

the uncertainty regarding the proper calculation of standard errors. Since overlapping observations are

typically used, the regression residuals will exhibit strong serial correlation and standard errors failing

to account for this fact will lead to biased inference.

The main contribution of this paper is the development of new asymptotic results for long-run

regressions with overlapping observations. Using a framework with near-unit-root regressors, I show

how to obtain asymptotically correct test-statistics, with good small sample properties, for the null

hypothesis of no predictability. In addition, I provide some further understanding of long-horizon

regressions, and the power of the associated test-statistics, by analyzing the properties of the long-run

estimators under an alternative of predictability.2

1Other applications of long-horizon regressions include tests of exchange rate predictability (Mark, 1995, and Rossi
2005), the Fisher effect (Mishkin, 1990, 1992, and Boudoukh and Richardson, 1993), and the neutrality of money (Fisher
and Seater, 1993).

2There is now a large literature on regressions with overlapping observations. Additional references to those mentioned
previously include Hansen and Hodrick (1980), Richardson and Stock (1989), Richardson and Smith (1991), Hodrick
(1992), Nelson and Kim (1993), Goetzman and Jorion (1993), Daniel (2001), Moon et al. (2004), Torous et al. (2004),
and Boudoukh et al. (2005). The study by Valkanov (2003) is the most closely related to this paper and is discussed in
more detail below.
Studies on (short-run) predictive regressions in the context of persistent regressors include Mankiw and Shapiro

(1986), Cavanagh et al. (1995), Stambaugh (1999), Lewellen (2004), Janson and Moreira (2004), Polk et al. (2004), and
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Typically, auto-correlation robust estimation of the standard errors (e.g. Newey and West, 1987)

is used to perform inference in long-run regressions. However, these robust estimators tend to perform

poorly in finite samples since the serial correlation induced in the error terms by overlapping data is

often very strong. I show that rather than using robust standard errors, the standard t−statistic can

simply be divided by the square root of the forecasting horizon to correct for the effects of the overlap

in the data. Further, when the regressors are persistent and endogenous, the long-run OLS estimator

suffers from the same problems as does the short-run OLS estimator, and similar corrections and test

procedures as those proposed by Campbell and Yogo (2005) for the short-run case should also be used

in the long-run; again, the resulting test statistics should be scaled due to the overlap. Thus, these

results lead to simple and more efficient inference in long-run regressions by obviating the need for

robust standard error estimation methods and controlling for the endogeneity and persistence of the

regressors.

The asymptotic distributions of the long-run estimators are derived not only under the null-

hypothesis of no predictability, but also under an alternative of predictability. This gives a more

complete characterization of the asymptotic properties of the long-run estimators than is typically

found in the literature, where results for long-run estimators are often derived only under the null-

hypothesis of no predictability. It is shown that, under the standard econometric model of stock return

predictability, the long-run estimators converge to well-defined quantities, but their asymptotic dis-

tributions are non-standard and fundamentally different from the asymptotic distributions under the

null hypothesis of no predictability. The rates of convergence of the long-run estimators are also slower

under the alternative hypothesis of predictability than under the null hypothesis, and slower than that

of the short-run estimator. These results suggest that under the standard econometric specifications

that are typically postulated, short-run inference is preferable to long-run inference. These results are

also in line with those of Mark and Sul (2004), who analyze local alternatives to the null hypothesis of

no predictability. They find that there are cases in which a long-run specification has more power to

detect deviations from the null hypothesis than a short-run specification, but only when the innova-

tions to the regressand are correlated with past innovations to the regressor. Since such a correlation

already violates the orthogonality condition that is being tested, this region of the parameter space is

not relevant in most traditional applications of long-horizon regressions.

The results in this paper are derived under the assumption that the forecasting horizon increases

Campbell and Yogo (2005).
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with the sample size, but at a slower pace. Most previous work, e.g. Richardson and Stock (1989) and

Valkanov (2003), rely on the assumption that the forecasting horizon grows at the same pace as the

sample size so that the forecasting horizon remains a fraction of the sample size asymptotically. In

some related work, Moon et al. (2004) consider both asymptotic approaches and find that although

the asymptotic distributions are different under the two assumptions, they both tend to provide good

approximations for the finite sample properties. Indeed, Valkanov (2003), who studies a similar econo-

metric model to the one analyzed in this paper, derives a similar scaling result to the one found here.

His results are less transparent, however, and do not capture the convenient result derived here –

namely, that with exogenous regressors the scaled standard t−statistic will be normally distributed.

Likewise, Valkanov’s results are also not as amenable to the endogeneity corrections pursued in this

paper.

Monte-Carlo simulations confirm the asymptotic results just described. They show that the scaling

of the test-statistic to control for the overlap in the observations, in conjunction with the endogeni-

ety corrections, produce tests that have rejection rates under the null hypothesis very close to their

nominal size. Further, it is evident that the power of the tests, in finite samples, based on short-run

inference dominates that of the long-run test-statistics, which confirms the asymptotic results under

the alternative of predictability.

The theoretical results in the paper are illustrated with an application to stock-return predictability.

I use annual excess returns on the S&P 500, as well as monthly excess returns on the value weighted

CRSP index as dependent variables, and the dividend price ratio and the smoothed earnings price ratio,

suggested by Campbell and Shiller (1988), as predictor variables. The data are a subset of those used

by Campbell and Yogo (2005) and for the one period horizon case the results are qualitatively identical

to those found by Campbell and Yogo. Using the entire samples and correcting for the endogeneity

and persistence in the regressors, the earnings price ratio is found to be a significant predictor in

both the annual and the monthly data, whereas the null of no predictability cannot be rejected when

using the dividend price ratio as a predictor. Contrary to some popular beliefs, however, the case for

predictability does not increase with the forecast horizon. In fact, the near opposite is true and for

horizons beyond five years the null of no predictability can no longer be rejected for the earnings price

ratio. Given the fairly weak evidence of predictability at the short horizon, these results are entirely

consistent with a loss of power as the forecasting horizon increases.
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The rest of the paper is organized as follows. Section 2 sets up the model and the key assumptions.

Section 3 derives the theoretical results and Section 4 describes the Monte-Carlo simulations. Section

5 discusses the practical implementation of the methods in the paper. The empirical application is

given in Section 6 and Section 7 concludes. Technical proofs are found in the appendix.

2 Model and assumptions

Although the results derived in this paper are of general applicability, it is helpful to discuss the model

and derivations in light of the specific question of stock return predictability. Thus, let the dependent

variable be denoted rt, which would typically represent excess stock returns when analyzing return

predictability, and the corresponding vector of regressors, xt, where xt is anm×1 vector and t = 1, ..., T .

The behavior of rt and xt are assumed to satisfy,

rt = α+ βxt−1 + ut, (1)

xt = Axt−1 + vt, (2)

where A = I + C/T is an m ×m matrix. The error processes are assumed to satisfy the following

conditions.

Assumption 1 Let wt = (ut, �t)
0 and Ft = {ws| s ≤ t} be the filtration generated by wt. Then

1. vt = D (L) �t =
P∞

j=0Dj�t−j, and
P∞

j=0 j ||Dj || <∞.

2. E [wt| Ft−1] = 0.

3. E [wtw
0
t] = Σ = [(σ11, σ12) , (σ21, I)] .

4. suptE
£
u4t
¤
<∞ and suptE

h
||�t||4

i
<∞.

The model described by equations (1) and (2) and Assumption 1 captures the essential features

of a predictive regression with nearly persistent regressors. It states the usual martingale difference

(mds) assumption for the errors in the return processes but allows for a linear time-series structure in

the errors of the predictor variables; moreover, the innovations can be conditionally heteroskedastic,

as long as they are covariance stationary. The error terms ut and vt are also often highly correlated.

The auto-regressive roots of the regressors are parametrized as being local-to-unity, which captures

the near-unit-root behavior of many predictor variables, but is less restrictive than a pure unit-root
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assumption.

Similar models are used to analyze the predictability of stock returns by Cavanagh et al. (1995),

Lanne (2002), Valkanov (2003), Torous et al. (2004), and Campbell and Yogo (2005).

Let Et = (ut, vt)
0 be the joint innovations process. Under Assumption 1, by standard arguments

(Phillips and Solo, 1992),

1√
T

[Tr]X
t=1

Et ⇒ B (r) = BM (Ω) (r) ,

where Ω = [(ω11, ω12) , (ω21,Ω22)] , ω11 = σ11, ω21 = D (1)σ12, ω12 = ω021, Ω22 = D (1)D (1)
0,

and B (·) = (B1 (·) , B2 (·))0 denotes an 1 + m−dimensional Brownian motion. Also, let Λ22 =P∞
k=1E (vkv

0
0) be the one-sided long-run variance of vt. The following lemma sums up the key asymp-

totic results for the nearly integrated model in this paper (Phillips 1987, 1988).

Lemma 1 Under Assumption 1, as T →∞,

(a) T−1/2xi,[Tr] ⇒ JC (r) ,

(b) T−3/2
PT

t=1 xt ⇒
R 1
0
JC (r) dr,

(c) T−2
PT

t=1 xtx
0
t ⇒

R 1
0
JC (r)JC (r)

0
dr,

(d) T−1
PT

t=1 utx
0
t−1 ⇒

R 1
0
dB1 (r)JC (r)

0
,

(e) T−1
PT

t=1 vtx
0
t−1 ⇒

R 1
0
dB2 (r)JC (r)

0
+ Λ22,

where JC (r) =
R r
0
e(r−s)CdB2 (s) .

Analogous results hold for the demeaned variables xt = xt−T−1
Pn

t=1 xt, with the limiting process

JC replaced by JC = JC −
R 1
0
JC . These results are used repeatedly below.

In both empirical work, and the applied theory literature, the stronger assumption that both ut

and vt are martingale difference sequences is often imposed. In the current paper, I will primarily work

with the general linear process structure for vt, but I will also comment and derive some of the results

under the simpler mds assumption.

Assumption 2 Let wt = (ut, vt)
0 and Ft = {ws| s ≤ t} be the filtration generated by wt. Then

1. E [wt| Ft−1] = 0.

2. E [wtw
0
t] = Ω = [(ω11, ω12) , (ω21,Ω22)] .

3. suptE
£
u4t
¤
<∞ and suptE

h
||vt||4

i
<∞.

Before discussing the long-run estimators of β in equation (1) it is useful to quickly review the

properties of the standard (short-run) OLS estimator of β, since the long-run estimators will reflect
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many of these properties. Let β̂ denote the standard OLS estimate of β in equation (1). By Lemma 1

and the continuous mapping theorem (CMT), it follows that

T
³
β̂ − β

´
⇒
µZ 1

0

dB1J
0
C

¶µZ 1

0

JCJ
0
C

¶−1
, (3)

as T →∞. This result is identical under either Assumption 1 or 2. Analogous to the case with pure

unit-root regressors, the OLS estimator does not have an asymptotically mixed normal distribution due

to the correlation between B1 and B2, which causes B1 and JC to be correlated. Therefore, standard

test procedures cannot be used.

The greatest problem in dealing with regressors that are near-unit-root processes is the nuisance

parameter C. If C was known, critical values for the asymptotic distribution in (3) could be obtained

from simulations, for instance. More efficient methods can also be implemented in this case as discussed

below in Section 3.3. However, C is generally unknown and not consistently estimable. It is nevertheless

useful to first derive inferential methods under the assumption that C is known, and then use the

arguments of Cavanagh et al. (1995) to construct feasible tests. The following section derives and

outlines the inferential methods used for estimating and performing tests on β in equation (1), treating

C as known. Section 5 discusses how the methods of Cavanagh et al. (1995), and Campbell and Yogo

(2005), can be used to construct feasible tests with C unknown.

3 Long-run estimation

3.1 The fitted regressions

In long-run regressions, the focus of interest are fitted regressions of the type

rt+q (q) = αU (q) + βU (q)xt + ut+q (q) , (4)

and

rt+q (q) = αB (q) + βB (q)xt (q) + ut+q (q) , (5)

where rt (q) =
Pq

j=1 rt−q+j and xt (q) =
Pq

j=1 xt−q+j . In equation (4), long-run future returns are

regressed onto a one period predictor, whereas in equation (5), long-run future returns are regressed

6



onto long-run past regressors. Equation (4) is the specification most often used for testing stock return

predictability, although Fama and French (1988b) use (5) in a univariate framework where sums of

future returns are regressed onto sums of past returns. For completeness, I will consider both kinds

of specifications here. The regressions in equation (4) and (5) will be referred to as the unbalanced

and balanced regressions, respectively, since in the former case long-run returns are regressed onto

short-run predictors and in the latter long-run returns are regressed onto long-run predictors. This

choice of terminology, i.e. unbalanced and balanced, is used purely as a mnemonic device; ‘unbalanced’

is not meant to convey anything negative about this specification.

Let the OLS estimators of βU (q) and βB (q) in equations (4) and (5), using overlapping observa-

tions, be denoted by β̂
U
(q) and β̂

B
(q), respectively. A long-standing issue is the calculation of correct

standard errors for β̂
U
(q) and β̂

B
(q). Since overlapping observations are used to form the estimates,

the residuals ut (q) will exhibit serial correlation; standard errors failing to account for this fact will lead

to biased inference. The common solution to this problem has been to calculate auto-correlation robust

standard errors, using methods described by Hansen and Hodrick (1980) and Newey and West (1987).

However, these robust estimators tend to have rather poor finite sample properties; this is especially

so in cases when the serial correlation is strong, as it often is when overlapping observations are used.

In this section, I derive the asymptotic properties of β̂
U
(q) and β̂

B
(q) under the assumption that the

forecasting horizon q grows with the sample size but at a slower pace. The results complement those of

Valkanov (2003), who treats the case where the forecasting horizon grows at the same rate as the sam-

ple size. Simulation results in Valkanov (2003) and this paper show that both asymptotic approaches

provide limiting distributions that are good proxies for the finite sample behaviour of the long-run es-

timators. However, it turns out that the asymptotic results derived under the current assumptions are

more transparent than those of Valkanov (2003) and provide further understanding of the properties

of the long-run estimators, both under the null and the alternative hypothesis of predictability. In

particular, the results here show the strong connection between the limiting distributions of the short-

and long-run estimators. This finding has important implications for the construction of more efficient

estimators and test-statistics that control for the endogeneity and persistence in the regressors. The

procedures in this paper also avoid the need for simulation methods; the proposed test-statistics have

limiting normal distributions, although in the case of endogenous regressors with unknown persistence,

Bonferroni type methods need to be used to construct tests and confidence intervals.
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3.2 The limiting distributions of the long-run OLS estimators

Given that equations (4) and (5) are estimated with overlapping observations, created from short-run

data, they should be viewed as fitted regressions rather than actual data generating processes (dgp); the

use of overlapping observations effectively necessitates the specification of a dgp for the observed short-

run data. The results below are derived under the assumption that the true dgp satisfies equations

(1) and (2), and that the long-run observations are formed by summing up data generated by that

process. Under the null hypothesis of no predictability, the one period dgp is simply rt = ut, in which

case the long-run coefficients βU (q) and βB (q) will also be equal to zero. It follows that under the null

both equations (4) and (5) are correctly specified and the analysis of β̂
U
(q) and β̂

B
(q) simplifies. It is

therefore common in the literature to only derive asymptotic results for long-run estimators under the

null of no predictability. By considering the properties of the estimators both under the null and the

alternative, however, a more complete picture of the properties of the long-run estimators emerges. Of

course, equation (1) is only one possible alternative to the null of no predictability, but it provides a

benchmark case.

Theorem 1 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds.

1. Under the null hypothesis that β = 0, as q, T →∞, such that q/T → 0,

(a)

T

q

³
β̂
U
(q)− 0

´
⇒
µZ 1

0

dB1J
0
C

¶µZ 1

0

JCJ
0
C

¶−1
, (6)

(b)

T
³
β̂
B
(q)− 0

´
⇒
µZ 1

0

dB1J
0
C

¶µZ 1

0

JCJ
0
C

¶−1
. (7)

2. Under the alternative hypothesis that β 6= 0, as q, T →∞, such that q/T → 0,

(a)

2T

q2

³
β̂
U
(q)− βU (q)

´
⇒ β

µZ 1

0

dB2J
0
C + Λ22

¶µZ 1

0

JCJ
0
C

¶−1
, (8)

(b)

T

q

³
β̂
B
(q)− βB (q)

´
⇒ β

µZ 1

0

dB2J
0
C +Ω22

¶µZ 1

0

JCJ
0
C

¶−1
, (9)

where βU (q) = β
¡
I +A+ ...+Aq−1¢ and βB (q) = βAq−1. Since A = I + C/T , it follows that

βU (q) /q = β +O (q/T )→ β and βB (q) = β +O (q/T )→ β, as q, T →∞, such that q/T → 0.
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Theorem 1 shows that under the null of no predictability, the limiting distributions of β̂
U
(q) and

β̂
B
(q) are identical to that of the plain short-run OLS estimator β̂, although β̂

U
(q) needs to be

standardized by q−1, since, as seen in part 2 of the theorem, the estimated parameter βU (q) is of an

order q times larger than the original short-run parameter β.

Under the alternative hypothesis of predictability, the limiting distributions of β̂
U
(q) and β̂

B
(q)

are quite different from the short-run result, and are in fact similar to the distribution of the OLS

estimator of the first order auto-regressive root in xt, although the rate of convergence is slower.

The estimators still converge to well defined parameters under the alternative hypothesis, but their

asymptotic distributions are driven by the auto-regressive nature of the regressors and the fact that

the fitted regressions in (4) and (5) are effectively misspecified, under the assumption that the true

relationship takes the form of equation (1). In addition, the limiting distributions of β̂
U
(q) and β̂

B
(q)

exhibit second order bias terms in the shape of Λ22 and Ω22, respectively. These bias terms do not

show up in the asymptotics of the short-run (q = 1) OLS estimator, and are, again, a result of the

effective misspecification of the long-run regression. Interestingly, under Assumption 2, the second

order bias term in β̂
U
(q) dissapears, since in this case Λ22 = 0, while the second order bias in β̂

B
(q)

still remains.

The equality between the long-run asymptotic distributions under the null hypothesis, shown in

Theorem 1, and that of the short-run OLS estimator in equation (3), may seem puzzling. To understand

the intuition behind this result, it is helpful to consider the asymptotic properties of narrow band

frequency domain regressions around the zero frequency. Since such regressions also attempt to capture

a long-run relationship, they are similar in nature to the long-run regressions considered here. As shown

by Phillips (1991b) and Corbae et al. (2002), when the regressors are unit-root processes, the limiting

distribution of the (non-parametric) narrow band zero frequency estimator is identical to that of the

standard OLS time-domain estimator, or equivalently to the full frequency band spectral regression.

There is thus no asymptotic efficiency loss from excluding all frequencies outside a neighbourhood

around the origin. The reason behind this result is that the spectra of the unit-root processes is

dominated by the behaviour at the zero frequency. That is, the long-run movements in the regressors

dominate their behaviour, and ignoring the short-run movements causes no asymptotic efficiency loss.

The same phenomenon occurs for the long-run estimators considered here, which explains the identical

rates of convergence and limiting distributions for the short- and long-run estimators.
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3.3 Endogeneity corrections

It is apparent that, under the null hypothesis, the long-run OLS estimators suffer from the same endo-

geneity problems as the short-run estimator. It is therefore useful to first consider suitable endogene-

ity corrections in the short-run regression; the following discussion repeats the results in Hjalmarsson

(2005).

In the pure unit-root case, one popular inferential approach is to “fully modify” the OLS estimator

as suggested by Phillips and Hansen (1990) and Phillips (1995). This estimator is suitable under

Assumption 1, since it allows for a very general error structure. In the near-unit-root case, a similar

method can be considered. Define the quasi-differencing operator

∆Cxt = xt − xt−1 −
C

T
xt−1 = vt, (10)

and let r+t = rt − ω̂12Ω̂
−1
22 ∆Cxt and Λ̂

+
12 = −ω̂12Ω̂−122 Λ̂22, where ω̂12, Ω̂

−1
22 , and Λ̂22 are consistent

estimates of the respective parameters.3 The fully modified OLS estimator is now given by

β̂
+

FM =

Ã
TX
t=1

r+t x
0
t−1 − T Λ̂+12

!Ã
TX
t=1

xt−1x
0
t−1

!−1
, (11)

where r+t = rt − ω̂12Ω̂
−1
22 ∆Cxt and rt = rt − T−1

Pt
t=1 rt. The only difference in the definition of

(11), from the FM-OLS estimator for the pure unit-root case, is the use of the quasi-differencing

operator, as opposed to the standard differencing operator. Once the innovations vt are obtained from

quasi-differencing, the modification proceeds in exactly the same manner as in the unit-root case.

Define ω11·2 = ω11 − ω12Ω
−1
22 ω21 and the Brownian motion B1·2 = B1 − ω12Ω

−1
22 B2 = BM (ω11·2).

The process B1·2 is now orthogonal to B2 and JC . Using the same arguments as Phillips (1995), it

follows that, as T →∞,

T
³
β̂
+

FM − β
´
⇒
µZ 1

0

dB1·2JC
0
¶µZ 1

0

JCJ
0
C

¶−1
≡MN

Ã
0, ω11·2

µZ 1

0

JCJ
0
C

¶−1!
. (12)

The corresponding t−statistics and Wald statistics will have standard distributions asymptotically.

Campbell and Yogo (2005) derive similar results, but they attack the problem from a test point-of-

view, whereas the derivation by Hjalmarsson (2005) that is presented here starts with the estimation

3The definition of Λ̂+12 is slightly different from the one found in Phillips (1995). This is due to the predictive nature
of the regression equation (1), and the martingale difference sequence assumption on ut.
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problem. However, presenting the derivation in this manner makes clear that this approach is a

generalization of fully modified estimation.

Analogously, a generalization of the augmented regression equation of Phillips (1991a) is possible.

By obtaining vt = ∆Cxt through quasi-differencing, the augmented regression

rt = α+ βxt−1 + γvt + ut·2 (13)

can be estimated. Under Assumption 2, the OLS estimator of β in equation (13) will have an asymptotic

distribution identical to that in (12).

Similar remedies to those just presented for the short-run case, such as the fully modified approach,

can be considered in the long-run. However, simulations not reported in the paper show that the finite

sample properties of the fully-modified long-run estimators appear very unsatisfactory. In the sequel I

therefore focus on a long-run version of the augmented regression equation in (13), which turn out to

work well in finite samples. The asymptotic results for the long-run FM-OLS estimator can be derived

in a similar manner and are not given here.

Consider the fitted augmented regression equations

rt+q (q) = αU (q) + βU (q)xt + γU (q) vt+q (q) + ut+q·2 (q) , (14)

and

rt+q (q) = αB (q) + βB (q)xt (q) + γB (q) vt+q (q) + ut+q·2 (q) , (15)

where vt (q) =
Pq

j=1 vt−q+j . Let β̂
U+
(q) and β̂

B+
(q) be the OLS estimators of βU (q) and βB (q) in

equations (14) and (15).

Theorem 2 Suppose the data is generated by equations (1) and (2), and that Assumption 2 holds.

1. Under the null hypothesis that β = 0, as q, T →∞, such that q/
√
T → 0,

T
³
β̂
B+
(q)− 0

´
,
T

q

³
β̂
U+
(q)− 0

´
⇒MN

Ã
0, ω11·2

µZ 1

0

JCJ
0
C

¶−1!
, (16)

where ω11·2 = ω11 − ω12Ω
−1
22 ω21.
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2. Under the alternative hypothesis that β 6= 0, as q, T →∞, such that q/
√
T → 0,

T

q

³
β̂
B+
(q)− βB (q)

´
,
2T

q2

³
β̂
U+
(q)− βU (q)

´
⇒ β

µZ 1

0

dB2J
0
C

¶µZ 1

0

JCJ
0
C

¶−1
. (17)

Under the null hypothesis of no predictability, the estimators β̂
U+
(q) and β̂

B+
(q) have asymp-

totically mixed normal distributions, although under the alternative hypothesis of predictability, the

asymptotic distributions are still non-standard. It is interesting to note, however, that the second

order bias term that appears in the balanced long-run OLS estimator β̂
B
(q), under the alternative

hypothesis, is in fact eliminated by fitting the augmented regression equation.

The results in Theorems 1 and 2 bring some clarity to the properties of long-run regressions with

nearly persistent regressors. Under the null of no predictability, the long-run estimators have identical

asymptotic distributions to the short-run estimators. Under the alternative hypothesis of predictability,

however, the asymptotic properties of the long-run estimators change substantially and the results are

now driven by the de facto misspecification of the long-run regressions, and the auto-regressive nature

of the regressors; this is manifest in both the slower rate of convergence as well as the non-standard

limiting distribution.

3.4 A normally distributed t−statistic for long-run inference

Given the asymptotically mixed normal distributions of β̂
U+
(q) and β̂

B+
(q) under the null hypothesis,

standard test procedures can now be applied to test the null of no predictability. In fact, the following

convenient result is easy to prove.

Corollary 1 Let tU+ (q) and tB+ (q) denote the standard t−statistics corresponding to β̂
U+
(q) and

β̂
B+
(q). That is,

tU+ (q) =
β̂
U+

k (q)r³
1
T

PT
t=1 û

U+ (q)
2
´
a0
³PT

t=1 ztz
0
t

´−1
a

, (18)

and

tB+ (q) =
β̂
B+

k (q)r³
1
T

PT
t=1 û

B+ (q)
2
´
a0
³PT

t=1 zt (q) zt (q)
0
´−1

a

, (19)

where ûU+ (q) and ûB+ (q) are the estimated residuals, zt = (xt, vt+q (q)), zt (q) = (xt (q) , vt+q (q))

and a is an 2m × 1 vector with the k’th component equal to one and zero elsewhere. Then, under

12



Assumption 2 and the null-hypothesis of β = 0, as q, T →∞, such that q/
√
T → 0,

tU+ (q)
√
q

,
tB+ (q)
√
q
⇒ N (0, 1) . (20)

Thus, long-run inference can be performed by simply scaling the corresponding standard t−statistic

by q−1/2. In the case of exogenous regressors, such that ω12 = 0, the scaling result in (20) will of course

apply to the t−statistics from the standard long-run estimators β̂
U
(q) and β̂

B
(q), which makes long-

run inference extremely straightforward in this case.

4 Monte Carlo results

All of the above asymptotic results are derived under the assumption that the forecasting horizon grows

with the sample size, but at a slower rate. Valkanov (2003) and Torous et al. (2004) also study long-run

regressions with near-integrated regressors, but derive their asymptotic results under the assumption

that q/T → κ ∈ (0, 1) as q, T → ∞. That is, they assume that the forecasting horizon grows at the

same pace as the sample size. Under such conditions, the asymptotic properties of β̂
U
(q) and β̂

B
(q)

are quite different from those derived in this paper. There is, of course, no right or wrong way to

perform the asymptotic analysis; what matters in the end is how well the asymptotic distributions

capture the properties of actual finite sample estimates. To this end, a brief Monte Carlo simulation

is therefore conducted.

Equations (1) and (2) are simulated, with ut and vt drawn from an iid bivariate normal distribution

with mean zero, unit variance and correlation δ = −0.9. The large negative correlation is chosen to

assess the effectiveness of the endogeneity corrections in β̂
U+
(q) and β̂

B+
(q), as well as to reflect the

sometimes high endogeneity of regressors such as the dividend- or earnings-price ratio in tests of stock

return predictability. The intercept α is set to one and the local-to-unity parameter C is set to either 0

or −10. Three different estimators, and their corresponding t−statistics, are considered: the long-run

estimators, β̂
U+
(q) and β̂

B+
(q), as well as the short-run OLS estimator in the augmented regression

equation (13).4 Since the aim of the simulation is to determine how well the asymptotic distributions

derived above reflect actual finite sample distributions, all estimation and testing is done under the

assumption that the parameter C is known. The sample sizes are chosen as T = 100 and T = 500.

4As shown by Phillips (1991a), in the case of normally distributed errors, the OLS estimator in the short-run aug-
mented regression equation (13) will in fact be equal to the maximum likelihood estimator.
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The first part of the simulation study evaluates the finite sample properties of the three estimators

under an alternative of predictability, where the true β is set equal to 0.05 and the second part analyzes

the size and power properties of the scaled t−tests. The forecasting horizon is set to q = 12 and q = 60

for the T = 100 and T = 500 samples, respectively. These forecasting horizons are similar to those

often used in practice for similar sample sizes. All results are based on 100, 000 repetitions.

The results are shown in Figures 1 and 2 for C = 0 and −10, respectively. In the top two panels,

(A1) and (A2) in both figures, the kernel estimates of the densities of the estimated coefficients are

shown. To enable a fair comparison, β̂
U+
(q) is divided by

¡
1 +A+ ...+Aq−1¢ and β̂

B+
(q) by Aq−1,

as indicated by the result in Theorem 1. The non-standard distributions of β̂
U+
(q) and β̂

B+
(q)

under the alternative are evident, especially so for β̂
B+
(q). The fact that β̂

U+
(q) converges faster

than β̂
B+
(q) under the alternative, after proper scaling, is also clear. This is especially clear in the

C = −10 case shown in Figure 2. The short-run estimator outperforms both long-run estimators,

however. In the bottom graphs, (B1) and (B2), the rejection rates of the 5% two-sided t−tests, for

tests of the null of no predictability, are given. For both T = 100 and T = 500, all three tests have

a rejection rate very close to 5% under the null, so the scaling of the long-run t−statistics by q−1/2

appears to work well in practice, as well as the endogeneity corrections. For C = −10, there are

some slight deviations from the nominal 5% size in the average rejection rates under the null. These

deviations are small, however, and well within the acceptable range; the rejection rates for tU+ (q) /
√
q

and tB+ (q) /
√
q under the null of no predictability are 0.041 and 0.077, respectively, for T = 100, and

0.041 and 0.074 for T = 500. The test based on the β̂
U+
(q) estimator has similar power properties

to the short-run test, although the short-run test performs better in all instances. The test based on

β̂
B+
(q) performs rather poorly in all cases.

In summary, the simulation results show that the endogeneity correction performed in β̂
U+
(q) and

β̂
B+
(q) appears to work well and that the scaling of the t−statistic, as suggested by Corollary 1,

achieves the correct size. Both the asymptotically slower rate of convergence for β̂
U+
(q) and β̂

B+
(q)

under the alternative of predictability and the finite sample results given in Figures 1 and 2 indicate

that there is little reason to consider long-run tests if one believes that the alternative model of stock

return predictability is given by equation (1).

Simulations not reported in this paper also show that these results are robust to heteroskedastic

error terms in the form of ARCH/GARCH processes.
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5 Feasible methods

To implement the methods described in the two previous sections, knowledge of the parameter C

is required. Since C is typically unknown and not estimable in general, the bounds procedures of

Cavanagh et al. (1995) and Campbell and Yogo (2005) can be used to obtain feasible procedures. The

following discussion assumes a scalar regressor, as do the above studies.

Although C is not estimable, a confidence interval for C can be obtained, as described by Stock

(1991). By evaluating the estimator and test-statistic for each value of C in that confidence interval,

a range of possible estimates and values of the test-statistic are obtained. A conservative test can

then be formed by choosing the most conservative value of the test statistic, given the alternative

hypothesis. If the confidence interval has a coverage rate of 100 (1− α1)% and the nominal size of

the test is α2, then by Bonferroni’s inequality the final conservative test will have a size no greater

than α = α1 + α2. In general, the size of the test will be less than α, and a test with a pre-

specified size can be achieved by fixing α2 and adjusting α1. Since a test-statistic will by necessity

be conservative only against a one-sided alternative, conservative confidence intervals provide a more

convenient way of presenting the results from the Bonferroni tests. Let C and C denote the values in the

100 (1− α1)% confidence interval for C, for which the test-statistic takes on the largest and smallest

value, respectively. The lower bound of the 100 (1− α1 − α2)% confidence interval for βU (q) is then

given by β̂
U+

C (q)−zα2/2β̂
U+

C (q)
√
q/tU+

C
(q) and the upper bound by β̂

U+

C (q)+zα2/2β̂
U+

C (q)
√
q/tU+C (q),

where the C and C subscripts indicate that the estimators and the test-statistics are evaluated for

these values of C and zα2/2 denotes the 1−α2/2 quantile of the standard normal distribution. Again,

α1 can be adjusted to achieve a desired 100 (1− α)% coverage rate. Analogously, a confidence interval

for βB (q) can be constructed from the estimator β̂
B+
(q). Note that, unlike the short-run methods in

Campbell and Yogo (2005), there is no guarantee that C and C are the endpoints of the confidence

interval for C, although for most values of q they typically are; the test-statistics should thus be

evaluated for all values in C, to find C and C.

In the empirical section, I adopt a similar approach to Campbell and Yogo (2005). A confidence

interval for C is obtained by inverting the DF-GLS unit-root statistic. Table 2 of Campbell and Yogo

(2005) is used to find the desired significance level of this confidence interval in order for the confidence

interval for the long-run slope coefficient to have a 90% coverage rate. A drawback of this method

is that no clear-cut point estimate is produced, but rather a range of estimates. I therefore present
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standard long-run OLS point estimates in the empirical work below.

6 Empirical application to stock return predictability

To illustrate the theoretical results derived in this paper, I revisit the question of stock return pre-

dictability. There have been many conflicting results regarding the existence of a predictable component

in stock returns. However, the most recent work by Lewellen (2004) and Campbell and Yogo (2005),

which rely on both robust as well as more efficient methods of inference, do find evidence that stock

returns are predictable to some degree. In this section, I extend their empirical analysis to the long-

horizon case. Since the long-run estimators β̂
U+
(q) and β̂

B+
(q), which control for the endogeneity

and persistence in the regressors, and the corresponding scaled t−tests are effectively long-run versions

of the methods developed in Campbell and Yogo (2005), the empirical results presented here provide

a direct comparison with previous work.

To further facilitate comparison between the short-run and the long-run case, I use a subset of the

data used by Campbell and Yogo (2005); these data were downloaded from Professor Yogo’s website.5

They consist of the annual excess returns on the S&P 500 over the period 1880-2002 as well as the

monthly excess returns on the CRSP NYSE/AMEX value-weighted index over the period 1926-2002.

The excess returns are calculated as the stock returns over the riskfree rate, measured by the return

on the one-month T-bill for the monthly data, and by the return on the three-month T-bill rolled over

quarterly for the annual data. As predictor variables, I use the dividend-price ratio and the smoothed

earnings-price ratio suggested by Campbell and Shiller (1988). The dividend price ratio is calculated

as dividends over the past year divided by the current price and the (smoothed) earnings-price ratio as

the average earnings of the past 10 years divided by the current price. Since earnings are not available

for the CRSP data, the corresponding S&P 500 earnings are used for this series as well. All regressions

are run using log-transformed variables with the log excess returns as the dependent variable.

The two key data characteristics that define the properties of the regression estimators analyzed

in this paper are the near persistence and endogeneity of the regressors. Table 1 shows confidence

intervals for the local-to-unity parameter C, calculated by inverting the DF-GLS unit-root test, as well

as estimates of the correlation between the innovations to returns and the innovations to the regressors;

these estimates are labeled δ in Table 1. The values are calculated in an identical manner to those of
5http://finance.wharton.upenn.edu/~yogo/
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Table 4 in Campbell and Yogo (2005). As is evident, there is a large negative correlation between the

innovations to returns and the predictor variables, both for the dividend- and earnings-price ratios.

With the exception of the annual earnings-price ratio series, the confidence intervals for C include the

unit-root case and it is clear that all predictor variables have first order auto-regressive roots that are

close to unity. There is thus a strong case for using estimators that correct for the bias induced by the

endogeneity and persistence in the regressors.

Given the poor performance of the β̂
B+
(q) estimator in the simulation exercises, I only show results

for the estimator β̂
U+
(q); the standard version, β̂

U
(q), of this estimator is also what is typically used in

long-run tests of stock return predictability. To illustrate the effects of an increasing forecasting horizon,

I show the estimates, with confidence intervals, as plots against the forecasting horizon q. Figures 3 and

4 show the results for the annual S&P 500 returns and the monthly CRSP returns, respectively. The

left-hand plots in these figures show the 90% Bonferroni confidence intervals based on the estimator

β̂
U+
(q) and the right hand plots show the standard long-run OLS point estimate β̂

U
(q), along with

90% confidence intervals. The OLS confidence intervals, calculated as β̂
U
(q)±1.65× β̂

U
(q)
√
q/tU (q),

are shown as a comparison, but are not valid since the long-run OLS estimator is not mixed normally

distributed; that is, these confidence intervals take into account the overlap in the data, but not

the endogeneity and persistence in the regressors. The Bonferroni confidence intervals are calculated

according to the methods described in the previous section, based on an inversion of the DF-GLS

statistic. The estimates and confidence intervals have all been scaled by q−1, as suggested by Theorem

1, to ease comparison across different horizons.

At the one-period horizon, the results are qualitatively identical to those of Campbell and Yogo;6

based on the Bonferroni confidence intervals shown in the right hand side graphs of Figures 3 and

4, there is evidence that the earnings-price ratio predicts stock-returns both in the annual and the

monthly data, but the null of no predictability cannot be rejected when using the dividend price ratio

as a regressor. If standard OLS methods were used to make inference, the null hypothesis would

be rejected in all cases, for both the earnings- and dividend-price ratio, at the one-period horizon.

What is interesting, however, is the behaviour of the confidence intervals as the forecasting horizon

increases. Contrary to some popular beliefs, the evidence in favour of predictability is not stronger

at the longer horizons. In fact, the case for predictability typically becomes weaker as the forecasting

6They are not numerically identical since the confidence intervals based on β̂
U+

(q), with q = 1, will be slightly
different from those based on Campbell and Yogo’s Q−test. Also, unlike here, all results in Campbell and Yogo are
standardized to conform with a model where both innovation processes have unit variance.
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horizon increases. Only in the monthly data, with the dividend-price ratio as a regressor, is there

slightly stronger evidence at longer horizons. However, the long-run evidence is extremely weak and

seems more like random fluctuations than a consistent pattern; the confidence intervals are pointwise

along q and the overall confidence level in the monthly case could thus be substantially less than the

nominal pointwise level. It is also clear that failure to control for the endogeneity and persistence in

the regressors will vastly overstate the case for predictability, in the long-run as well as the short-run.

This is particularly evident in the results for the monthly data, shown in Figure 4.

Given the theoretical results, and the simulation evidence presented earlier in this paper, these

empirical results are not hard to reconcile. Since the evidence of predictability is weak also at the

short horizon, and there is a demonstrated loss of power as the forecasting horizon increases, it is not

surprising that the null of no predictability cannot be rejected for longer horizons.

These results also generally agree with those of Ang and Bekaert (2003) who also draw the con-

clusion that the evidence of predictability tends to be strongest at a shorter horizon. Their findings

suggest that previous strong evidence of long-run predictability may be largely due to incorrect infer-

ence based on Hansen and Hodrick (1980) and Newey and West (1987) methods, as well as a much

stronger case for predictability in data ending before 1990. Ang and Bekaert (2003) use Hodrick (1992)

auto-correlation robust standard errors, which they argue have good finite sample properties. How-

ever, these rely on the regressors being covariance stationary, which is a restrictive assumption for

variables like the dividend- and earnings-price ratio, as evidenced by the results in Table 1. Boudoukh

et al. (2005) explicitly question the prevailing view of long-horizon predictability and reach similar

conclusions to those presented here, although their focus is on the joint properties of the regression

estimators across different horizons.

7 Conclusion

I derive several new results for long-horizon regressions that use overlapping observations when the

regressors are endogenous and nearly persistent. I show how to properly correct for the overlap in the

data in a simple manner that obviates the need for auto-correlation robust standard error methods in

these regressions. Further, when the regressors are persistent and endogenous, I show how to correct

the long-run OLS estimators and test procedures in a manner similar to that proposed by Campbell

and Yogo (2005) for the short-run case.
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In addition, by analyzing the asymptotic properties of the long-run estimators under an alternative

of predictability, I find strong evidence that long-horizon tests tend to have less power to detect

deviations from the null hypothesis of no predictability than do one-period short-run tests.

An empirical application to stock-return predictability illustrates these results and shows that, in

line with the theoretical results of this paper, the evidence for predictability is typically weaker as the

forecasting horizon gets longer, reflecting the loss of power in long-run tests.

A Proofs

Proof of Theorem 1. For ease of notation the case with no intercept is treated. The results

generalize immediately to regressions with fitted intercepts by replacing all variables by their demeaned

versions. All limits as q, T →∞ are under the condition that q/T → 0.

1. (a) Under the null hypothesis,

T

q

³
β̂
U
(q)− 0

´
=

Ã
1

qT

TX
t=1

ut+q (q)x
0
t

!Ã
1

T 2

TX
t=1

xtx
0
t

!−1
=

⎛⎝ 1

qT

TX
t=1

qX
j=1

ut+jx
0
t

⎞⎠Ã 1

T 2

TX
t=1

xtx
0
t

!−1
.

By standard arguments,

1

qT

TX
t=1

qX
j=1

ut+jx
0
t =

1

qT

TX
t=1

(ut+1x
0
t + ...+ ut+qx

0
t)⇒

Z 1

0

dB1J
0
C ,

as q, T →∞, such that q/T → 0, since for any h > 0, 1T
PT

t=1 ut+hx
0
t ⇒

R 1
0
dB1J

0
C . Therefore,

T

q

³
β̂
U
(q)− 0

´
⇒
µZ 1

0

dB1J
0
C

¶µZ 1

0

JCJ
0
C

¶−1
.

(b) Under the null hypothesis,

T
³
β̂
B
(q)− 0

´
=

Ã
1

q2T

TX
t=1

ut+q (q)xt (q)
0
!Ã

1

q2T 2

TX
t=1

xt (q)xt (q)
0
!−1

=

⎛⎝ 1

q2T

TX
t=1

qX
j=1

qX
k=1

ut+jx
0
t−q+k

⎞⎠⎛⎝ 1

q2T 2

TX
t=1

qX
j=1

qX
k=1

xt−q+jx
0
t−q+k

⎞⎠−1 .
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By some algebraic manipulations,

1

T 2

TX
t=1

qX
j=1

qX
k=1

xt−q+jx
0
t−q+k

= γ̂1xx (0) + γ̂2xx (0) + ...+ γ̂q−1xx (0) + γ̂qxx (0) + γ̂2xx (−1) + γ̂3xx (−1) + ...+ γ̂qxx (−1)
...

+γ̂qxx (− (q − 1)) + γ̂1xx (q − 1)
...

+γ̂q−1xx (1) + γ̂q−2xx (1) + ...+ γ̂1xx (1) ,

where γ̂kxx (h) =
1
T2

PT−q+1
t=q xt−q+kx

0
t−q+k+h. Further, define γxx (h) =

R 1
0
JCJ

0
C , and γ̂xx (h) =

γ̂qxx (h) =
1
T 2

PT−q+1
t=q xtx

0
t+h. By standard arguments, for any fixed k and h,

γ̂kxx (h)⇒ γxx (h) =

Z 1

0

JCJ
0
C ,

since q/T = o (1). Now, using Skorohod’s representation theorem, there exists a probability space with

random variables
n
γ̂k∗xx (h) , γ

∗
xx (h)

o
, for which γ̂k∗xx (h)

a.s.→ γ∗xx (h) , γ̂
k∗
xx (h) ≡ γ̂kxx (h) , and

R 1
0
J∗CJ

∗0
C ≡R 1

0
JCJ

0
C , where ‘≡’ denotes distributional equivalence. Since the asymptotic limit of γ̂

k∗
xx (h) is identical

for all k, γ̂k∗xx (h) = γ̂∗xx (h) + oa.s. (1) , and

1

T 2

TX
t=1

qX
j=1

qX
k=1

xt−q+jx
0
t−q+k

≡ [qγ̂∗xx (0) + qoa.s. (1)] + [(q − 1) γ̂∗xx (1) + (q − 1) oa.s. (1)] + ...+ [γ̂∗xx (− (q − 1))]

+ [γ̂∗xx (q − 1)] + ...+ [(q − 1) γ̂∗xx (1) + (q − 1) oa.s. (1)]

=

q−1X
h=−q+1

(q − |h|) γ̂∗xx (h) + q2oa.s. (1) .

Since γ̂∗xx (h)
a.s.→

R 1
0
J∗CJ

∗0
C for all h, and 1

q

Pq−1
h=−q+1

³
1− |h|

q

´
= 1, it follows that as q, T →∞,

1

q2T 2

TX
t=1

qX
j=1

qX
k=1

xt−q+jx
0
t−q+k ≡

1

q

q−1X
h=−q+1

µ
1− |h|

q

¶
γ̂∗xx (h) + oa.s. (1)
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Z 1

0
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C ,
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by Toeplitz’s lemma and the assumption that q/T = o (1). On the original probability space, therefore,

1

q2T 2

TX
t=1

qX
j=1

qX
k=1

xt−q+jx
0
t−q+k ⇒

Z 1

0

JCJ
0
C ,

as q, T →∞. Similarly, let γux (h) =
R 1
0
dB1J

0
C , γ̂

k
ux (h) =

1
T

PT−q+1
t=q ut−q+kx

0
t−q+k−h, and γ̂qux (h) =

γ̂ux (h) =
1
T

PT−q+1
t=q utx

0
t−h. For any fixed k and h, γ̂kux (h) ⇒ γux (h) =

R 1
0
dB1J

0
C . Using the same

methods as for the denominator, as q, T →∞,

1

q2T

TX
t=1

qX
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qX
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ut+jx
0
t−q+k ⇒

Z 1

0

dB1J
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Combining these results,

T
³
β̂
B
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´
⇒
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dB1J
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µZ 1
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JCJ
0
C

¶−1
.

2. (a) Next, consider the properties of β̂
U
(q) under the alternative hypothesis. By summing up

on both sides in equation (1),

rt+q (q) = β (xt + xt+1 + ...+ xt+q−1) + ut+q (q)

= β

Ã¡
xt +Axt + ...+Aq−1xt

¢
+

Ã
vt+1 + (Avt+1 + vt+2) + ...+

qX
p=2

Aq−pvt+p−1

!!
+ ut+q (q)

= βU (q)xt + β

q−1X
j=1

qX
p=q−j+1

Aq−pvt+p−q+j + ut+q (q) ,

where βU (q) = β
¡
I +A+ ...+Aq−1¢. Thus,

T

q2

³
β̂
U
(q)− βU (q)

´
=

⎛⎝β
1

q2T

TX
t=1

q−1X
j=1

qX
p=q−j+1

Aq−pvt+p−q+jx
0
t +

1

q2T

TX
t=1

ut+q (q)x
0
t

⎞⎠Ã 1

T 2

TX
t=1

xtx
0
t

!−1
.

By previous results, as q, T → ∞, 1
qT

PT
t=1 ut+q (q)x

0
t ⇒

R 1
0
dB1J

0
C , so that

1
q2T

PT
t=1 ut+q (q)x

0
t =
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Op

¡
q−1

¢
. Further,

1
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0
t
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!
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Aq−p

!
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1

q

qX
p=q

Aq−p

!
γ̂vx (q − 1)

#
,

where γ̂vx (h) =
1
T

PT
t=1 vtx

0
t−h. By the local-to-unity property of A,

1

q

qX
p=h

Aq−p =
1

q

qX
p=h

µ
I +

C

T

¶q−p
=
1

q

qX
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³
I +O

³ q
T

´´
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q − h+ 1

q
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¡
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.

It follows that

1

q2T

TX
t=1

q−1X
j=1

qX
p=q−j+1

Aq−pvt+p−q+jx
0
t

=
1
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¡
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µ
1
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¸
=

1

q
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q
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¡
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.

For any h,

γ̂vx (h) =
1

T

TX
t=1

vtx
0
t−h ⇒

Z 1

0

dB2J
0
C + Λ22 (h) = γvx (h) + Λ22 (h) ,

where Λ22 (h) =
P∞

k=hE
¡
vi,kv

0
i,0

¢
. Since 1q

Pq−1
h=1

³
1− h

q

´
= 1

2 , as q →∞, and Λ22 (h)→ 0 as h→∞,

it follows that
2

q

q−1X
h=1

µ
1− h

q

¶
Λ22 (h)→ Λ22 (1) = Λ22,

as q →∞. Thus as q, T →∞,

2

q
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µ
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q

¶
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Z 1

0

dB2J
0
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Summing up,
2T

q2

³
β̂
U
(q)− βU (q)

´
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0
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0
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¶
.
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(b) As in part 2.(a),

rt+q (q) = β (xt + xt+1 + ...+ xt+q−1) + ut+q (q) = βxt+q−1 (q) + ut+q (q) .

Thus,

β̂
B
(q) =

Ã
β

TX
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xt+q−1 (q)xt (q)
0
+

TX
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0
!Ã
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0
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.

Observe that xt+q−1 = Aq−1xt+
Pq

p=2A
q−pvt+p−1,..., xt = Aq−1xt−q+1+

Pq
p=2A

q−pvt+p−q, and one

can therefore write

xt+q−1 (q) = xt+q−1 + ...+ xt+1 + xt
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qX
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0
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and
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0
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Let βB (q) = βAq−1 and consider

T

q

³
β̂
B
(q)− βB (q)

´
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Ã
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1
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Since, as q, T → ∞, 1
q2T

PT
t=1 ut+q (q)xt (q)

0 ⇒
R 1
0
dB1J

0
C , it follows that

1
q3T

PT
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0 =

op
¡
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¢
. Next,
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Again, let γ̂vx (h) = T−1
PT

t=1 vtx
0
t−h and use the Skorohod construction, such that

γ̂∗vx (h)
a.s.→ γ∗vx (h) + Λ22 (h) =

Z 1

0

dB∗2J
∗0
C + Λ22 (h)

where γ̂∗vx (h) ≡ γ̂vx (h) and
R 1
0
dB∗2J

∗0
C ≡

R 1
0
dB2J

0
C . By similar arguments as in 1.(b),

1

q
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0 ≡ 1

q
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q
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q
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γ̂∗vx (p− 1 + h) + oa.s. (1) .

Since Λ22 (h)→ 0 as h→∞ and Λ22 (h)→ Ω22 =
P∞

k=−∞E
¡
vi,kv

0
i,0

¢
as h→ −∞, it follows that

1

q
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µ
1− |h|

q

¶
Λ22 (p− 1 + h)→ Ω22

as q →∞, for any p, and thus

1

q
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q

q−1X
h=−q+1

µ
1− |h|

q
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Z 1
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On the original probability space

1

q

qX
p=2

Aq−p 1

q2T
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t=1

vt+p−1 (q)xt (q)
0 ⇒

Z 1

0
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and
T

q

³
β̂
B
(q)− βB (q)

´
⇒ β

µZ 1

0

dB2J
0
C +Ω22

¶µZ 1

0

JCJ
0
C

¶−1
.

Proof of Theorem 2. Only the derivations for β̂
B+
(q) are shown. The proof for β̂

U+
(q) follows

in a similar manner, although with somewhat simpler arguments given the short-run nature of the

regressors in this case.

1. Start with β̂
B+
(q) under the null-hypothesis. Let rq+q = (r1+q (q) , ..., rT (q))

0 be the T × 1

vector of observations, and define xq and vq+q analogously. The OLS estimator of β
B (q) in (15) is now

given by

β̂
B+
(q) =

¡
rq0+qQvqx

q
¢
(xq0Qvqx

q)
−1

.
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where Qvq = I − vq+q
¡
vq0+qv

q
+q

¢−1
vq0+q. Under the null-hypothesis,

Qvqr
q
+q = Qvq

¡
vq+qγ
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and

T
³
β̂
B+
(q)− 0

´
=
¡
q−2T−1uq0+qQvqx

q
¢ ¡
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.

As q, T →∞,
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xq0Qvqx
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C ,

since q/T → 0. Next,

Qvqu
q
+q = u

q
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q
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Ã
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Let
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1

T
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0
t−h, and γ̂uv (h) =

1

T

T−q+1X
t=q

utv
0
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and define γ̂kvv (h) and γ̂kuv (h) in an analogous manner to the previous proof. Similarly to above,
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³
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as q, T →∞, by standard results (e.g. Andrews, 1991), since qT−1/2 = o (1). By identical arguments,

as q, T →∞,

1
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Again, using the same methods as in the proof of part 1.(b) in Theorem 1, it follows that

1

q2T
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1
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Thus,
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and
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2. Now consider β̂
B+
(q) under the alternative hypothesis. Observe that,
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Recall that xt+q−1 = Aq−1xt (q) +
Pq

p=2A
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Again, let βB (q) = βAq−1 and write
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Consider
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By similar arguments as above, as q, T →∞, q−1T−1vq0+p−1v
q
+q →p Ω22 and q−1T−1vq0+qv
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Further,
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as q, T →∞. Thus,
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Proof of Corollary 1. Under the null hypothesis, following the arguments in the Proof of Theorem

2,
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Identical arguments hold for ω̂B11·2. The following t−statistics can now be formed

T
q β̂
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ω̂U11·2T
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³PT
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a
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q,

where tU+ (q) and tB+ (q) are the standard t−statistics corresponding to β̂
U+
(q) and β̂

B+
(q). The

results now follow directly from the asymptotically mixed normal distributions of the estimators.
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Table 1: Characterstics of the predictor variables. This table reports the key time-series characteristics
of the dividend-price ratio (d − p) and the earnings-price ratio (e − p). The S&P 500 variables are
on an annual frequency and the CRSP data on a monthly frequency. The column labeled δ gives the
estimated correlations between the innovations to the predictor variables and the innovations to the
corresponding excess returns. The last column gives a 95% confidence interval of the local-to-unity
parameter C, obtained by inverting the DF-GLS unit-root test statistic.

Series Sample Period Obs. Variable δ 95% CI for C
S&P 500 1880− 2002 123 d− p −0.845 [−6.107, 4.020]

1880− 2002 123 e− p −0.962 [−28.262,−4.232]
CRSP 1926− 2002 913 d− p −0.950 [−12.683, 2.377]

1926− 2002 913 e− p −0.987 [−14.797, 1.711]
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Figure 1: Results from the Monte Carlo simulation for C = 0. The top two graphs, (A1) and (A2),

show the kernel estimates of the densities of the estimated coefficients, using the estimators β̂
B+
(q) ,

β̂
U+
(q), and β̂

U+
(q = 1), referred to as Balanced, Unbalanced and Short-run, respectively, in the

legend. The true value of β is equal to 0.05. As suggested by the result in Theorem 1, β̂
U+
(q) and

β̂
B+
(q) are divided by

¡
1 +A+ ...+Aq−1¢ and Aq−1, respectively, with A = 1+C/T , to enable a fair

comparison between the estimators. The bottom graphs, (B1) and (B2), show the average rejection
rates of the scaled t−tests corresponding to the respective estimators; the flat dashed lines show the
5% level.
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Figure 2: Results from the Monte Carlo simulation for C = −10. The top two graphs, (A1) and (A2),
show the kernel estimates of the densities of the estimated coefficients, using the estimators β̂

B+
(q) ,

β̂
U+
(q), and β̂

U+
(q = 1), referred to as Balanced, Unbalanced and Short-run, respectively, in the

legend. The true value of β is equal to 0.05. As suggested by the result in Theorem 1, β̂
U+
(q) and

β̂
B+
(q) are divided by

¡
1 +A+ ...+Aq−1¢ and Aq−1, respectively, with A = 1+C/T , to enable a fair

comparison between the estimators. The bottom graphs, (B1) and (B2), show the average rejection
rates of the scaled t−tests corresponding to the respective estimators; the flat dashed lines show the
5% level.
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Figure 3: Estimation results for the annual S&P 500 data. The top two graphs show the results for
the earnings-price ratio (e− p). In the left hand one, (A1), the 90% Bonferroni confidence intervals for
the slope coefficient β are plotted as a function of the forecasting horizon q. These are obtained from

the endogeneity corrected long-run estimator β̂
U+
(q) and the corresponding scaled t−statistics. They

are thus asymptotically valid for statistical inference. To enable comparison across q, the confidence
bounds have been scaled by q−1 as suggested by Theorem 1. As a comparison, in the right hand

graph, (A2), the standard 90% confidence intervals for the long-run OLS estimator β̂
U
(q) are shown,

along with the point estimate β̂
U
(q) (the dotted line). These confidence intervals are calculated as

β̂
U
(q) ± 1.65 × β̂

U
(q)
√
q/tU (q) and are not valid since they are based on the assumption of an

asymptotically mixed normal distribution of β̂
U
(q). Again, the point estimates and the confidence

bounds have been scaled by q−1. The flat dashed lines indicate zero. The bottom graphs, (B1) and
(B2), show the corresponding results for the dividend-price ratio (d− p).
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Figure 4: Estimation results for the monthly CRSP data. The top two graphs show the results for the
earnings-price ratio (e− p). In the left hand one, (A1), the 90% Bonferroni confidence intervals for
the slope coefficient β are plotted as a function of the forecasting horizon q. These are obtained from

the endogeneity corrected long-run estimator β̂
U+
(q) and the corresponding scaled t−statistics. They

are thus asymptotically valid for statistical inference. To enable comparison across q, the confidence
bounds have been scaled by q−1 as suggested by Theorem 1. As a comparison, in the right hand

graph, (A2), the standard 90% confidence intervals for the long-run OLS estimator β̂
U
(q) are shown,

along with the point estimate β̂
U
(q) (the dotted line). These confidence intervals are calculated as

β̂
U
(q)± 1.65× β̂

U
(q)
√
q/tU (q) and are thus not valid since they are based on the assumption of an

asymptotically mixed normal distribution of β̂
U
(q). Again, the point estimates and the confidence

bounds have been scaled by q−1. The flat dashed lines indicate zero. The bottom graphs, (B1) and
(B2), show the corresponding results for the dividend-price ratio (d− p).
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